場合の数|和分解(栄東中学 2018年)

次の□にあてはまる数を答えなさい。

7個の同じおかしをAさん,Bさん,Cさんの3人に分けるとき,その分け方は□通りあります。ただし,必ず1人に最低でも1個のおかしを分けることにします。

栄東中学・A日程(2018年)

1月受験の代表校である栄東中学より「場合の数」の問題です。以下の過去問解説記事の使い方を読み、得点力アップや弱点補強にご活用ください。

本問題の難度

問題の難易度
易しい
Lv.1
Lv.2
Lv.3
Lv.4
Lv.5
難しい

Lv.1 中学受験 基本問題
各単元の基本問題。
1から基本ポイントの確認や弱点補強をしたい受験生や、5~6年生の通常カリキュラムの復習にオススメ。
偏差値の目安やその他難度の詳細などはコチラをご覧ください。

解説

(1) 1つずつずらして数え上げる

プロ家庭教師K

3人で7個持つので、A+B+C=7という式になります。和の7をA,B,Cの3人にどのように分解するかを考える「和分解」と考えられます。

まず、A,B,Cの3人は最低でも1個のおかしをもらえるので、確定している3個は取り除きます
7ー3=4。この4個を3人にどのように分けるかを考えていきましょう。

4個のおかしを3つに分ける方法は以下の4パターンがあります。数えモレがないように、極端な数から始めて、1つずつズラしていきましょう

(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)

次に、3つに分けたおかしを誰に配るかを考えます。
(4,0,0)や(2,2,0)(2,1,1)のような(〇,●,●)のパターンは、〇を誰に配るかで通り数が決まるので、(〇,●,●)(●,〇,●)(●,●,〇)の3通りです。
(3,1,0)のような(〇,●,△)のパターンは、3個もらうのはAさん,Bさん,Cさんの3通り、1個もらうのは残り2人の2通り、…と考え、配り方は3×2×1=6通りとなります。

(4,0,0) 3通り
(3,1,0) 6通り
(2,2,0) 3通り
(2,1,1) 3通り

よって、3+6+3+3=15通りが答えです。

プロ家庭教師K

(4,0,0)
(0,4,0)
(0,0,4)
(3,1,0)
(3,0,1)
   ・
   ・
などのようにすべての通り数を書くのは止めましょう

15(通り)

Kとピヨまるの談話室

ピヨまる

この問題、僕も解説通りのやり方で解きました。
ただ、塾の先生が違う解き方を説明していたんですよね。何だっけな力士とか言ってた気がします。

プロ家庭教師K

どすこいどすこい
力士ではなく仕切りだと思うぞ。塾の上位クラスでは通常の解き方に加えて、仕切りを使った解き方を説明されることがある。さては、上位クラスだな?!

ピヨまる

バレました上位ですよ。
なんか自慢みたいになっちゃったなぁ。

プロ家庭教師K

という事で、別解いきます!!

(1)別解 仕切りを使って考えてみよう!

7個を3人に分ける仕切りを考える

プロ家庭教師K

7個の同じおかしを3人にどのように分けるかなので、2つの仕切りを使って考えることもできます。

過去問解説-栄東中学_2018年a1-7_場合の数1

上の画像の↓以降の仕切りでの分け方は、
1つ目は、Aさんにおかし1個、Bさんにおかし1個、Cさんにおかし5個
2つ目は、Aさんにおかし1個、Bさんにおかし2個、Cさんにおかし4個 を表しています。

仕切りを入れる場所は?

過去問解説-栄東中学_2018年a1-7_場合の数2

それぞれの人が必ず1個以上のおかしを持つように仕切りを入れるので、仕切りを入れる場所は6か所あります。2つの仕切りの入れ方は、この6か所から2か所の選び方を考えればよいので、\(\large{\frac{6×5}{2×1}}\)=15より、15通りが答えです。

15(通り)

こちらの記事もオススメ☆

・栄東中学の算数分析/過去問解説はコチラ
・過去問解説記事の一覧はコチラ
・場合の数の過去問解説はコチラ
・その他の中学受験基本問題(★☆☆☆☆)はコチラ

導依頼・各種お問合せ以下のフォームよりお気軽にご相談ください

去問成績管理表 発売中\概要ページはこちらをクリック/

2022年度版_過去問管理表バナー
画像をクリックして、オンラインショップにアクセス!

この記事が気に入ったら
フォローしてね!

よかったらシェアしてね!